Effect of pure mode I, II or III loading or mode mixity on crack growth in a homogeneous solid
نویسندگان
چکیده
منابع مشابه
The Effect of Inclined U-Notch Geometry on Mode Ratio (KII/KI) under Mixed Mode (I + II) Loading
In inclined U-notches, the mixed mode (I + II) loading occurs and the mode ratio can be increased by varying the notch angle. In this paper, the effect of the inclined U-notch geometry, i.e. the notch depth, the notch angle, the notch root radius, and the position of the notch with respect to supports, on the mode ratio (KII/KI) have been studied. Three-point bending and plane strain condition ...
متن کاملEffect of T-stress on Edge Dislocation Formation at a Crack Tip under Mode I Loading
We calculate the effect of the nonsingular stress acting parallel to a crack (the “Tstress”) on edge dislocation nucleation at a crack loaded in Mode I. We find that this leads to crack size effect – that is, for small cracks (of order 100 atomic spacings or less), the T stress causes the critical load for dislocation nucleation (expressed in terms of the applied stress intensity factor) to dev...
متن کاملFinite Element Model of Crack Growth under Mixed Mode Loading
In this paper, in order to predict the crack growth trajectory and to evaluate the SIF under mixed modes (I & II), one proposes a new finite element program for crack growth using the source code written in FORTRAN. The fin ite element mesh is generated using an advancing front method, where the generation of the background mesh and the construction of singular elements are also added to this d...
متن کاملFinite Element Modeling of Crack Initiation Angle Under Mixed Mode (I/II) Fracture
Present study deals with the prediction of crack initiation angle for mixed mode (I/II) fracture using finite element techniques and J-Integral based approach. The FE code ANSYS is used to estimate the stress intensity factor numerically. The estimated values of SIF were incorporated into six different crack initiation angle criteria to predict the crack initiation angle. Single edge crack spec...
متن کاملThe effect of crack surface interaction on the stress intensity factor in Mode III crack growth in round shafts
Turbine-generator shafts are often subjected to a complex transient torsional loading. Such transient torques may initiate and propagate a circumferential crack in the shafts. Mode III crack growth in turbo-generator shafts often results in a fracture surface morphology resembling a factory roof. The interaction of the mutual fracture surfaces results in a pressure and a frictional stress field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Solids and Structures
سال: 2010
ISSN: 0020-7683
DOI: 10.1016/j.ijsolstr.2010.02.024